Oral Presentation International Veterinary Immunology Symposium 2016

Development of a chlamydial vaccine for koalas (#52)

Peter Timms 1
  1. University of the Sunshine Coast, Maroochydore DC, QLD, Australia

Wild koala populations continue to experience serious declines as a result of several threatening factors including, (i) loss of habitat, (ii) motor vehicle trauma; (iii) dog attacks; (iv) chlamydial disease. Chlamydial infections are associated with diseases ranging from ocular disease leading to blindness, as well as urinary and genital tract disease, leading to female infertility. Modeling shows that targeting chlamydial disease would have a major impact on stabilising population decline. Our previous studies have demonstrated that koalas can be safely immunized with a vaccine containing a mixture of chlamydial major outer membrane protein (MOMP) antigens combined with a single or three-dose subcutaneous regime. In our most recent, large scale, field trial of the vaccine, we vaccinated 30 koalas that were outwardly clinically healthy but either Chlamydia PCR negative or Chlamydia PCR positive, and followd them for 1-2 years to assess the protective effect of the vaccine (compared to a control group of unvaccinated koalas). We observed strong, specific and long-lasting immune responses in the vaccinated koalas; high titre antibody responses (as measured by ELISA and also in vitro neutralisation) as well as Chlamydia-specific cytokine responses (interferon-gamma and IL-17 in particular).  For animals which were Chlamydia PCR positive at the time of vaccination, we observed a significant reduction in their infection PCR load (at both the ocular and urogenital tract sites). We also observed protection from progression to clinical disease in the vaccinated animals. We have also conducted a small trial to vaccinate animals which already have clinical signs of ocular disease. Instead of the normal practice of administering antibiotics (chloramphenicol, daily for 28 days, which severely disrupts the animal’s gut microbiome) we vaccinated four animals with a single dose, 3-MOMP vaccine. For all vaccinated animals, their Chlamydia PCR load decreased, often to zero, and in two animals at least, we observed a decrease in their clinical disease score. These results are promising for the future development of an effective chlamydial vaccine for use in captive as well as wild koalas.